Aquatic Ecosystem Sciences LLC

Jacob Kann, Ph.D. Aquatic Ecologist

295 East Main St., Suite 7 Ashland, OR 97520 Voice: 541-482-1575 Fax: 541-552-1024 Email: jacobkann@aol.com

Tech Memo

То:	Mike Mader/Jason – TLBP	From:	Jake Kann
Email	: To: <u>tlbp@presys.com,</u> <u>kenneth.w.kauffman@state.or.us</u>	Pages:	14
Phone	2	Date:	10-02-07
Re:	Tenmile Sampling	CC:	Ken Kauffman – OHD

To all concerned,

September 25th, 2007 toxic algal cell count results for Tenmile Lakes are shown in Table 1:

Station ¹	Date	<i>Microcystis</i> (cells/ml)	<i>Gloeotrichia</i> (cells/ml)	Total <i>Microcystis+</i> <i>Gloeotrichia</i> ²	Total <i>Anabaena</i> (cells/ml)
S3	9/25/2007	1632	0	1632	227
S8	9/25/2007	1115	0	1115	1274
N11	9/25/2007	2771	0	2771	227
N16	9/25/2007	277	0	277	4289.9

Table 1. Cell density of potentially toxigenic cyanobacteria in Tenmile Lakes.

¹See Figure 1 for station location

²The combined density of MSAE and GTEC is computed because GTEC is a potential microcystin producer (Carey et al. 2007).

Samples collected on September 25th show that cell density of potentially toxigenic cyanobacteria species increased or remained similar at 3 stations (S3, S8, and N16) for *Microcystis aeruginosa* (MSAE), but decreased overall for total *Anabaena* (*A. flos-aquae [ABFA]+ A. planctonica [ABPL]*) (Table1; Figure 2). Although MSAE at N11 decreased since the 9/12 sampling trip, it remained above the WHO Alert Level 2 guideline of 2,000 cells ml⁻¹ (at which time DHS and local health services typically provide notification to remind homeowners to follow water treatment guidelines—see Appendix II). MSAE at both S3 and S8 exceeded the WHO Alert Level 1 guideline (also known as the increased vigilance level for drinking water systems) of 500 cells ml⁻¹.

Although total *Anabaena* density at N16 increased slightly compared to the previous sample period, total *Anabaena* density decreased at S3, S8, and N11. MSAE at N16 was 4290 cells/ml and continued to exceed the Alert Level 2 guideline (Figure 2). However, as stated in previous Tech Memos, the predominant *Anabaena* species was *Anabaena planctonica* (Appendix I), a species less commonly associated with toxin production.

October 2, 2007

Aside from S3 where biovolume of *Aphanizomenon flos-aquae* (31.6%) and the diatom *Melosira ambigua* (29.3%) replaced *A. planctonica* as the dominant phytoplankton species, *A. planctonica* continued to comprise the majority of biovolume at other stations (43.6 to 81.4%; Appendix I). MSAE biovolume at N11 comprised 24% of the total biovolume. Various Chrysophytes, Cryptophytes, and Diatoms comprised the remainder of the biovolume at all stations.

9/12/07 Microcystin Toxin Results

Because the peak MSAE cell density of 6,605 cells/ml that occurred at N11 on 9/12 exceeded the Alert Level 2 guideline by over 3 times, and past research from Tenmile Lakes as well as other lake systems indicates that 5000 cells per ml of MSAE can commonly be associated with 1 μ g/L of the hepatotoxin microcystin, a sample from this station was sent to GreenWater Labs for ELISA testing for the microcystin toxin (Appendix III). These results show that microcystin at Station N11 (Big Creek Arm of North-Tenmile) on September 25, 2007 was 5.4 μ g/L. Although the associated cell count level (6,605 cells/ml) for the station exceeded the World Health Organization (WHO) Alert Level 2 guideline of 2000 cells/ml, and that information was forwarded to local and state health offices, the attached microcystin toxin result confirms the presence of toxin that was 5.4 times higher than the WHO guideline level of 1 μ g/L for drinking water. As such, it is essential that homeowners utilizing lake water for potable uses redouble their treatment efforts and ensure their treatment systems follow current OHS guidelines. These results also confirm that the lower public health guideline levels (compared to those used for generalized recreational contact advisories) for lake and reservoir systems utilized for drinking water are necessary for warning public and private entities drawing water to treat for potable uses.

Given the continued presence of potentially toxigenic cyanobacteria in Tenmile Lakes that exceeded Alert Level 2, and the fact that cyanobacterial cells have been reported in home-owner drinking water treatment systems (see Kann 2007), all drinking water protection efforts should be in place. However, levels of all potentially toxic cyanobacteria were well below Oregon's recreational guidelines (100,000 cells per ml for *Anabaena* and 40,000 cells/ml for *Microcystis*).

Please call if you have any questions.

Sincerely,

Joert Van

Jacob Kann Ph.D. Aquatic Ecologist

Due to the patchy nature of blue-green algal blooms it is possible for higher Microcystis aeruginosa and Anabaena flosaquae densities (and therefore higher microcystin toxin and anatoxin concentrations to be present in areas not sampled in this survey, particularly along shorelines or during calm conditions of little to no wind. Given the lakes' demonstrated history of toxic blooms, and the fact that all areas of the lake cannot be tested at all times, those utilizing the lake for drinking water should <u>always</u> follow Oregon Health Division recommendations for purification (attached). In addition, recreational users should <u>always</u> avoid contact with water whenever noticeable surface concentrations of algae are evident or when the lake has an obvious green to blue-green appearance. Moreover, because pets or other domestic animals are the most likely to ingest contaminated water, these animals should not be allowed access to the lakeshore whenever either noticeable surface concentrations of algae or an obvious green to blue-green appearance is evident.

References for Alert Levels

- Carey, C.C., and J.F. Haney, and K.L. Cottingham. 2007. First report of microcystin-LR in the cyanobacterium *Gloeotrichia echinulata*. Environmental toxicology 22:337-339.
- Kann, J. 2007. Tenmile Lakes Toxic Algal Sampling Program: 2006 Data Summary Report. Tenmile Lakes Basin Partnership, Lakeside OR 97520
- Falconer et al. 1999. Safe levels and safe practices. Pages 155-177 *in*: I. Chorus and J. Bartram, editors. *Toxic Cyanobacteria in water: a guide to their public health consequences*. World Health Organization Report. E & FN Spon, London and New York.
- Yoo, S.R., W.W. Carmichael, R.C. Hoehn, and S.E. Hrudy. 1995. Cyanobacterial (blue-green algal) toxins: a resource guide. AWWA Research Foundation and American Water Works Association. Denver, CO. 229 p. (ISBN 0-89867-824-2)

Year 2007 Tenmile Lakes Sample Site Locations

Figure 1. Sample station location for toxic cyanobacteria sampling in Tenmile Lakes, 2007.

Figure 2. Trend of potentially toxic cyanobacteria in Tenmile Lakes, 2007.

Phytoplankto	on Sample A	nalysis			
	•				
Sample:	Tenmile Lake				
Sample Station:	S3				
Sample Depth:					
Sample Date:	25-Sep-07				
Total Density (#/mL):	133				
· · · ·					
Total Biovolume (um ³ /mL):	241,484				
Trophic State Index:	39.6				
	Density	Density	Biovolume	Biovolume	
Species	#/mL	Percent	um ³ /mL	Percent	Group
1 Aphanizomenon flos-aquae	61	45.6	76,247	31.6	bluegreen
2 Melosira ambigua	18	13.7	70,825		diatom
3 Melosira granulata	15	11.3	32,924		diatom
4 Microcystis aeruginosa	14	10.8	13,055		bluegreen
5 Anabaena planctonica	8	6.4	40,247		bluegreen
6 Cryptomonas erosa	5	3.4	2,368		cryptophyte
7 Dictyosphaerium ehrenbergianum	2	1.5	937	0.4	green
8 Cyclotella stelligera	2	1.5	107	0.0	diatom
9 Rhodomonas minuta	1	1.0	26		cryptophyte
10 Cocconeis placentula	1	1.0	599	0.2	diatom
11 Chlamydomonas sp.	1	0.5	211	0.1	green
12 Mallomonas sp.	1	0.5	247	0.1	chrysophyte
13 Melosira granulata angustissima	1	0.5	1,952		diatom
14 Selenastrum minutum	1	0.5	13		green
15 Navicula tripunctata	1	0.5	729	0.3	diatom
16 Cymbella minuta	1	0.5	241	0.1	diatom
17 Sphaerocystis schroeteri	1	0.5	364		green
18 Gomphonema subclavatum	1	0.5	390	0.2	diatom
	· ·	0.0		0.2	
Aphanizomenon flos-aquae cells/mL =	1,210				
Aphanizomenon flos-aquae heterocysts/mL =	27				
	21				
Microcystis aeruginosa cells/mL =	1,632				
Anabaena planctonica cells/mL =	220				
Anabaena planctonica heterocysts/mL =	7				
Aquatic Analysts			Sample ID:	KR80	

Appendix I – Aquatic Analysts Laboratory Reports

Phytoplankt	on Sample A	nalysis			
	Terreile Lake				
	Tenmile Lake				
Sample Station:	58				
Sample Depth:	05.0				
Sample Date:	25-Sep-07				
Total Density (#/mL):	109				
Total Biovolume (um ³ /mL):					
Trophic State Index:	40.9				
	10.0				
	Density	Density	Biovolume	Biovolume	
Species	-	Percent	um³/mL	Percent	Group
1 Anabaena planctonica	56	51.9	226,996	78.7	bluegreen
2 Aphanizomenon flos-aquae	33		35,361	12.3	bluegreen
3 Melosira ambigua	6		13,822	4.8	diatom
4 Microcystis aeruginosa	5		8,924		bluegreen
5 Melosira granulata	3	2.3	1,397	0.5	diatom
6 Chlamydomonas sp.	2	1.4	495	0.2	green
7 Dictyosphaerium ehrenbergianum	1	0.9	488	0.2	green
8 Cryptomonas erosa	1	0.9	528	0.2	cryptophyte
9 Cyclotella stelligera	1	0.9	56	0.0	diatom
10 Cymbella minuta	1	0.5	188	0.1	diatom
11 Unidentified flagellate	1	0.5	10	0.0	
12 Navicula cryptocephala veneta	1	0.5	48	0.0	diatom
13 Nitzschia acicularis	1	0.5	142	0.0	diatom
Aphanizomenon flos-aquae cells/mL =					
Aphanizomenon flos-aquae heterocysts/mL =	8				
Anabaena planctonica cells/mL =					
Anabaena planctonica heterocysts/mL =	34				
NAL					
Microcystis aeruginosa cells/mL =	1,115				
Arustia Analusta			0		
Aquatic Analysts			Sample ID:	n Köl	

Phytoplankto	on Sample A	nalysis			
	T				
•	Tenmile Lake				
Sample Station:	N11				
Sample Depth:					
Sample Date:	25-Sep-07				
Total Density (#/mL):	41				
Total Biovolume (um ³ /mL):	92,267				
Trophic State Index:	32,207				
	02.1				
	Density	Density	Biovolume	Biovolume	
Species		Percent	um³/mL	Percent	Group
1 Anabaena planctonica	11.6	27.9	40,263		bluegreen
2 Microcystis aeruginosa	4.5	10.8	22,168	24.0	bluegreen
3 Aphanizomenon flos-aquae	4.1	9.8	3,840	4.2	bluegreen
4 Melosira ambigua	3.9	9.3	10,003	10.8	diatom
5 Rhodomonas minuta	3.9	9.3	77	0.1	cryptophyte
6 Dictyosphaerium ehrenbergianum	3.0	7.4	2,925	3.2	green
7 Melosira granulata	2.8	6.9	5,319	5.8	diatom
8 Ulothrix sp.	2.0	4.9	2,763	3.0	green
9 Achnanthes minutissima	0.8	2.0	41	0.0	diatom
10 Cryptomonas erosa	0.8	2.0	423	0.5	cryptophyte
11 Chlamydomonas sp.	0.8	2.0	264	0.3	green
12 Asterionella formosa	0.8	2.0	572	0.6	diatom
13 Ankistrodesmus falcatus	0.4	1.0	20	0.0	green
14 Melosira granulata angustissima	0.4	1.0	914	1.0	diatom
15 Eunotia pectinalis	0.4	1.0	293	0.3	diatom
16 Mougeotia sp.	0.2	0.5	360	0.4	green
17 Selenastrum minutum	0.2	0.5	4	0.0	green
18 Cocconeis placentula	0.2	0.5	93	0.1	diatom
19 Mallomonas sp.	0.2	0.5	77	0.1	chrysophyte
20 Botryococcus braunii	0.2	0.5	1,828	2.0	green
21 Nitzschia paleacea	0.2	0.5	20	0.0	diatom
Anabaena planctonica cells/mL =	220				
Anabaena planctonica heterocysts/mL =	6				
Anabaena planctonica akinetes/mL =	1				
Aphanizomenon flos-aquae cells/mL =	61				
Microcystis aeruginosa cells/mL =	2,771				
Aquatic Analysts			Sample ID:	KR82	

Phytoplankto	on Sample A	nalysis			
Somploy	Tonmilo Loko				
	Tenmile Lake				
Sample Station:	NID				
Sample Depth:	25 San 07				
Sample Date:	25-Sep-07				
Total Density (#/mL):	285				
Total Biovolume (um ³ /mL):	920,854				
Trophic State Index:	49.3				
	Densite	Develte	Diama	Discustores	
	Density	-	Biovolume		
Species	#/mL	Percent	um³/mL	Percent	Group
1 Anabaena planctonica	178.1	62.5	749,576	81.4	bluegreen
2 Aphanizomenon flos-aquae	59.4	20.8	78,537	8.5	bluegreen
3 Melosira ambigua	29.0	10.2	68,376	7.4	diatom
4 Melosira granulata	5.3	1.9	13,640	1.5	diatom
5 Anabaena flos-aquae	2.6	0.9	4,419	0.5	bluegreen
6 Microcystis aeruginosa	2.6	0.9	2,216	0.2	bluegreen
7 Dictyosphaerium ehrenbergianum	2.6	0.9	1,266	0.1	green
8 Cryptomonas erosa	1.3	0.5	686	0.1	cryptophyte
9 Ulothrix sp.	1.3	0.5	1,055	0.1	green
0 Mallomonas sp.	1.3	0.5	501	0.1	chrysophyte
1 Asterionella formosa	1.3	0.5	580	0.1	diatom
Anabaena planctonica cells/mL =	4,096				
Anabaena planctonica heterocysts/mL =	124				
Anabaena planctonica akinetes/mL =	1.3				
Aphanizomenon flos-aquae cells/mL =	1,247				
phanizomenon flos-aquae heterocysts/mL =	0.0				
	0.0				
Anabaena flos-aquae cells/mL =	66				
Anabaena flos-aquae heterocysts/mL =	2.6				
	2.0				
Microcystis aeruginosa cells/mL =	277				
				KR83	

APPENDIX II

Oregon Health Division Drinking water treatment guidance August 31, 2001 Contact Person: Ken Kauffman 503-731-4015 kenneth.w.kauffman@state.or.us

- 1. Treatment systems should consist of sand filtration followed by chlorination, followed by activated charcoal filtration. It is essential that sand filtration be done before disinfection to remove as many algal cells as possible without killing or rupturing them.
- 2. Chlorination systems should be capable of maintaining at least 1 ppm of chlorine residual for at least 20 minutes contact time before the water enters the activated charcoal system.
- 3. The final step in the process should be effective activated charcoal treatment to remove toxin remaining after the sand filtration and disinfection processes.
- 4. All treatment equipment used should meet NSF standard 53, and should be adequately sized to treat the maximum amount of water that you use. Treatment equipment needs regular monitoring and servicing to assure that it functions properly.
- 5. Ideally all water entering your home should be treated as recommended. It is possible to treat only water used in the kitchen, but this increases chances that animals or pets would inadvertently drink untreated water.

As more monitoring is done and toxin levels are measured this advisory may be altered. The advisory is to remain in effect until specifically changed or lifted by county and state health officials.

FACT SHEET

TOXIC MICROCYSTIS BLOOMS IN TENMILE LAKES

(information modified from Oregon Health Division Document: Hazards from *Microcystis aeruginosa* in Fresh Water – http://www.ohd.hr.state.or.us/esc/docs/mafact.htm)

> What is a toxic bloom of *Microcystis aeruginosa*?

Microcystis aeruginosa is a species of blue-green algae that grows naturally in many surface waters. In most bodies of fresh water and most weather conditions it does not pose a hazard to wildlife or human beings. However, under certain conditions (such as when the water is warm with abundant nutrients) *Microcystis aeruginosa* can grow more rapidly than normal. The result can be excessive numbers of large colonies that form floating masses on the water surface or that are dispersed within the water column. These occurrences are called "algal blooms". *Microcystis aeruginosa* can produce natural toxins (called microcystins) that are very potent, and these toxins are higher in concentration during bloom conditions. The microcystin toxins are produced and contained inside the *Microcystis* cells, and are released to the water when the cells die and disintegrate. Also, since the cells are very small, they can be ingested along with the water. Toxin levels in a water body tend to be higher near shorelines and at the surface of the water where animal and human contact is most likely.

> What are the primary toxic effects of these blooms?

The primary toxic effect of microcystins is on the liver. At very high doses, death of liver cells and destruction of blood vessels in the liver can result in serious injury and possibly death. Though less is known about the long-term effects of microcystin toxins, animal studies have shown these toxins can cause chronic liver damage and may promote the formation of liver tumors. These effects are more likely to occur if exposure is frequent over a long period of time.

The levels of toxin necessary to produce immediate or acute illness in humans and animals are much higher than levels that may cause chronic liver injury. Drinking water standards are usually based on chronic effects. Currently, there is no drinking water standard in the U.S. for microcystins. Canada, Australia, and Great Britain have developed a guideline level of 1 microgram toxin per liter of water, or 1 part per billion (1 ppb). During algal blooms, toxin levels can greatly exceed 1 ppb.

How is it determined when the water becomes safe once a bloom is reported?

Changes in weather or in other conditions in a water body influence the growth of blue-green algae. Generally, cooler weather, rainfall, and reduced sunshine will lead to reductions in algal growth and toxin levels. Algal blooms generally peak and die off rapidly and toxin levels in the water decline over days or weeks. Only blue-green algae experts can distinguish visually between different kinds of algal growth, and are able to determine when blooms have disappeared. Testing of the water is the only way to be certain that toxin levels are no longer dangerous.

> When does the Oregon Health Division Issue Warnings?

Drinking Water -- When measured or estimated toxin levels reach 1 ug/l the Department of Human Services, Office of Public Health Systems issues public advisories or warnings. These will include warnings regarding the use of water for drinking or food preparation unless the water has been treated following specific guidelines for destroying and removing toxins. Animals should be kept away from water during periods when microcystin toxin levels exceed 1 ug/l, because drinking the water can cause serious or even fatal illness.

Contact Recreation -- If levels are high enough to pose hazards for swimming, waterskiing or other direct skin contact activities, the advisories will warn against water contact. Generally skin hazards occur where the water has a green or blue-green color or where there are visible clumps or mats of algae present in the water. When measured toxin levels reach 5 ug/L or cell counts reach 15,000 cells/ml, contact recreation is considered unsafe.

> Can testing ensure that all areas of the lake are safe?

No, due to the patchy nature of blue-green algal blooms it is possible for higher *Microcystis* densities (and therefore higher microcystin toxin concentrations) to be present in areas not sampled in a given survey, particularly along shorelines or during calm conditions of little to no wind. Therefore, when a lake has a demonstrated history of algal toxicity or the presence of known toxin producing algal species, those utilizing the lake for drinking water should always follow Oregon Health Division recommendations for purification. In addition, recreational users should always avoid contact with water whenever noticeable surface concentrations of algae are evident or when the lake has an obvious green to blue-green appearance.

> Are domestic animals at risk during blooms?

Yes, pets or other domestic animals are the most likely to ingest contaminated water, these animals should not be allowed access to the lakeshore whenever either noticeable surface concentrations of algae or an obvious green to blue-green appearance is evident.

> Is it safe to eat fish and other aquatic life?

Clams, mussels, snails and other shellfish should not be eaten during microcystin advisory periods, but it is believed that fish can be safely eaten if they are cleaned and all internal organs discarded. Internal organs of such fish may be toxic even to animals.

How much does testing cost?

Samples must be shipped to qualified laboratories for analysis. A microscopic determination to quantify the number of Microcystis colonies and cells costs \$90 per sample. A specialized test to analyze for the microcystin toxin concentration costs \$100 per sample (overnight shipping costs not included), and for anatoxins the cost is \$250/sample.

 NOTE: A fact sheet about microcystin toxin and its effects may be found on the Web at www.dhs.state.or.us/publichealth/esc/docs/mafact.cfm

APPENDIX III

Microcystin Analysis Report

Project: City of Lakeside (TLBP)

Sample Identification

1. N. Ten Mile

Sample Prep - The sample was ultra-sonicated to lyse all cells and release toxins. Due to the concentration of the sample, a 2-fold dilution was required to bring the concentration of the sample in range of the standard curve for the MC ELISA.

Analytical Methodology - A microcystins enzyme linked immunosorbent assay (ELISA) was utilized for the quantitative and sensitive congener-independent detection of MCs. The current ELISA kit is sensitive down to a detection/quantification limit of 0.15 µg/L. Standard recovery was 104%.

Summary of Results

Sample

1. N. Ten Mile

ND = not detected above the detection limit Limit of Detection = $0.15 \,\mu g/L$

* Microcystin data is contained in accompanying spreadsheet.

386 328 0882: voice + 386 329 9646, tax cyanomail@cyanolab.com + wirw.c alah man

MC levels (µg/L) ≈ 5.4

Sample Collection Date

09/12/07

Gree laboratories

aquatic analysis ... research ... consulting