AQUATIC ECOSYSTEM SCIENCES, LLC

Jacob Kann, Ph.D. Aquatic Ecologist

295 East Main St., Suite 7 Ashland, OR 97520 Voice: 541-482-1575 Fax: 541-552-1024 Email: jacobkann@aol.com

Email Memorandum

То:	Dave Stone/Ken Kauffman – OHD Mike Mader/Jason – TMLBP		Jake Kann
email:	tlbp@presys.com,Dave.Stone@state.or.us Kenneth.Kauffman@state.or.us	Pages:	10
Phone	:	Date:	10-10-05
Re:	Tenmile Sampling	CC:	

To all,

September 28th toxic algal cell count results for Tenmile Lakes are as follows:

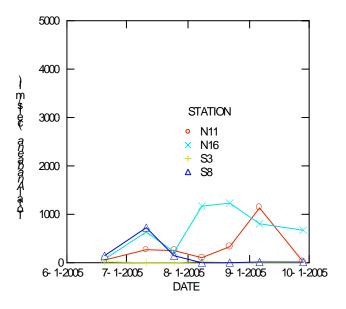
STATION	DATE	<i>Microcystis</i> (cells/ml)	Total Anabaena (cells/ml)
S3	9-06-05	0	0
S8	9-06-05	31	11
N11	9-06-05	0	14
N16	9-06-05	36	669

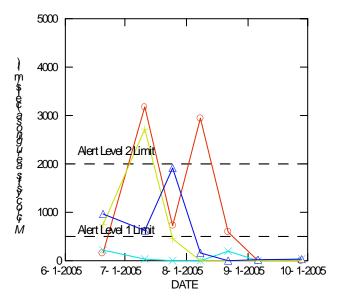
Microcystis aeruginosa (MSAE) was low lake-wide on September 28th, with a maximum of 36 cells per ml detected at North Lake station N16, and 31 cells per ml at South Lake station S8. No MSAE was detected at remaining stations. Total *Anabaena* cells/ml remained low at all stations, with station N16 stable at 669 cells per ml, and station N11 decreasing from 1131 cells per ml to 14 cells per ml. None of the stations exceeded the WHO Alert Level 2 drinking water guideline of 2000 cells ml⁻¹ (see below figure). At the Alert Level 2 guideline of 2000 cells/ml Oregon Human Services (OHS) issues public alerts for drinking water lakes. Levels are well below the 40,000 cells/ml and 100,000 cells/ml level when OHS recommends issuing recreational advisories for *Microcystis and Anabaena*, respectively. As always, those who utilize lake water for domestic purposes should take precautions to ensure water treatment systems are functioning properly and that Oregon Health Division recommendations for purification are being followed.

South lake stations were dominated primarily by the cyanobacterium *Aphanizomenon* and secondarily by various diatoms; North Lake Stations N11 and N16 were dominated by *Aphanizomenon* (92.5 and 76.3% respectively), with *Anabaena* comprising 18.7% of the biovolume at N16. Various Chrysophytes, Cryptophytes, and Diatoms comprised the remainder of the biovolume.

Due to the patchy nature of blue-green algal blooms it is possible for higher *Microcystis aeruginosa* and *Anabaena flos-aquae* densities (and therefore higher microcystin toxin and anatoxin concentrations to be

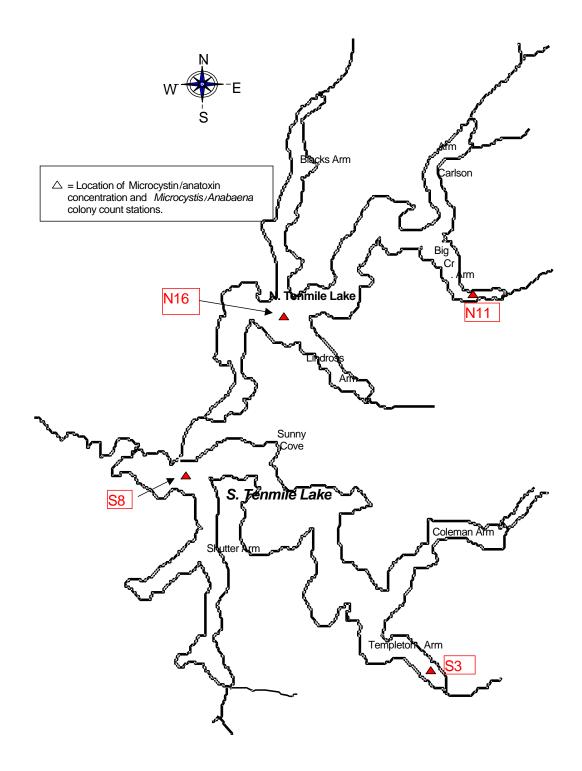
present in areas not sampled in this survey, particularly along shorelines or during calm conditions of little to no wind. Given the lakes' demonstrated history of toxic blooms, and the fact that all areas of the lake cannot be tested at all times, those utilizing the lake for drinking water should <u>always</u> follow Oregon Health Division recommendations for purification (attached). In addition, recreational users should <u>always</u> avoid contact with water whenever noticeable surface concentrations of algae are evident or when the lake has an obvious green to blue-green appearance. Moreover, because pets or other domestic animals are the most likely to ingest contaminated water, these animals should not be allowed access to the lakeshore whenever either noticeable surface concentrations of blue-green appearance is evident.


Please call if you have any questions.


Sincerely,

Jacob Kann Ph.D. Aquatic Ecologist

References for Alert Levels


- Yoo, S.R., W.W. Carmichael, R.C. Hoehn, and S.E. Hrudy. 1995. Cyanobacterial (blue-green algal) toxins: a resource guide. AWWA Research Foundation and American Water Works Association. Denver, CO. 229 p. (ISBN 0-89867-824-2)
- Falconer et al. 1999. Safe levels and safe practices. Pages 155-177 *in*: I. Chorus and J. Bartram, editors. *Toxic Cyanobacteria in water: a guide to their public health consequences*. World Health Organization Report. E & FN Spon, London and New York.

Algal cell count trends for Tenmile Lakes, 2005.

Year 2005 Tenmile Lakes Sample Site Locations

Sample: Sample Station: Sample Depth:	Tenmile Lake S3
Sample Date:	28-Sep-05
Total Density (#/mL):	215
Total Biovolume (um ³ /mL):	269,990
Trophic State Index:	40.4

_	Species	Density #/mL	Density Percent	Biovolume um³/mL -	Biovolume Percent
1	Aphanizomenon flos-aquae	184	85.9	185,966	68.9
2	Melosira varians	12	5.5	46,254	17.1
3	Nitzschia palea	5	2.5	949	0.4
4	Melosira granulata	3	1.2	8,697	3.2
5	Melosira ambigua	3	1.2	3,105	1.1
6	Fragilaria crotonensis	3	1.2	24,353	9.0
7	Nitzschia acicularis	1	0.6	369	0.1
8	Navicula cryptocephala	1	0.6	244	0.1
9	Chromulina sp.	1	0.6	26	0.0
10	Rhodomonas minuta	1	0.6	26	0.0

Aphanizomenon flos-aquae cells/mL =	2,952
Aphanizomenon flos-aquae	
heterocysts/mL =	29

Aquatic Analysts

Sample ID: HN72

	Tenmile
Sample:	Lake
Sample Station:	S8
Sample Depth:	
Sample Date:	28-Sep-05

Total Density (#/mL):	121
Total Biovolume (um ³ /mL):	182,045
Trophic State Index:	37.6

	Species	Density #/mL	Density Percent	Biovolume um³/mL	Biovolume Percent
-	-		-	-	-
1	Aphanizomenon flos-aquae	51	41.9	63,759	35.0
2	Melosira granulata angustissima	45	37.6	67,022	36.8
3	Melosira ambigua	7	6.0	34,063	18.7
4	Cryptomonas erosa	3	2.6	1,611	0.9
5	Melosira granulata	3	2.6	10,735	5.9
6	Mallomonas sp.	2	1.7	785	0.4
7	Ochromonas sp.	2	1.7	176	0.1
8	Fragilaria crotonensis	1	0.9	867	0.5
9	Anabaena flos-aquae	1	0.9	69	0.0
10	Melosira varians	1	0.9	1,343	0.7
11	Rhodomonas minuta	1	0.9	21	0.0
12	Ulothrix sp.	1	0.9	1,322	0.7
13	Microcystis aeruginosa	1	0.9	248	0.1
14	Ankistrodesmus falcatus	1	0.9	26	0.0

Aphanizomenon flos-aquae cells/mL = Aphanizomenon flos-aquae	1,012
heterocysts/mL =	8
Anabaena flos-aquae cells/mL =	10
Anabaena flos-aquae heterocysts/mL =	1
Microcystis aeruginosa cells/mL =	31

Sample ID: HN73

Aquatic Analysts

Sample: Sample Station: Sample Depth: Sample Date:	N11
Total Density (#/mL):	199
Total Biovolume (um ³ /mL):	244,464

ai biovolume (um /mL):	244,404
Trophic State Index:	39.7

_	Species	Density #/mL	Density Percent	Biovolume um³/mL	Biovolume Percent
1	Aphanizomenon flos-aquae	171	85.7	226,013	92.5
2	Dinobryon bavaricum	11	5.7	5,740	2.3
3	Dinobryon sertularia	7	3.6	2,711	1.1
4	Cryptomonas erosa	1	0.7	740	0.3
5	Rhodomonas minuta	1	0.7	28	0.0
6	Trachelomonas volvocina	1	0.7	2,684	1.1
7	Cosmarium sp.	1	0.7	299	0.1
8	Trachelomonas hispida	1	0.7	2,990	1.2
9	Anabaena planctonica	1	0.7	2,605	1.1
10	Cocconeis placentula	1	0.7	655	0.3

Aphanizomenon flos-aquae cells/mL = Aphanizomenon flos-aquae	3,587
heterocysts/mL =	68
Anabaena planctonica cells/mL =	14

Aquatic Analysts

Sample ID: HN74

Sample:	Tenmile Lake
Sample Station: Sample Depth:	N16
Sample Date:	28-Sep-05
Total Density (#/mL):	350

Total Density (#/mL):	350
Total Biovolume (um ³ /mL):	649,945
Trophic State Index:	46.7

	Species	Density #/mL	Density Percent	Biovolume um³/mL	Biovolume Percent
-	-	-			-
1	Aphanizomenon flos-aquae	328	93.8	495,985	76.3
2	Anabaena planctonica	13	3.6	121,700	18.7
3	Melosira ambigua	4	1.0	13,725	2.1
4	Mallomonas sp.	2	0.5	681	0.1
5	Ceratium hirundinella	2	0.5	17,567	2.7
6	Microcystis aeruginosa	2	0.5	287	0.0

	7,873
Aphanizomenon flos-aquae heterocysts/mL =	102
Anabaena planctonica cells/mL = abaena planctonica heterocysts/mL =	665 4
Microcystis aeruginosa cells/mL =	36

Aquatic Analysts

Sample ID: HN75

Contact Person: Ken Kauffman 503-731-4015 kenneth.w.kauffman@state.or.us

- 1. Treatment systems should consist of sand filtration followed by chlorination, followed by activated charcoal filtration. It is essential that sand filtration be done before disinfection to remove as many algal cells as possible without killing or rupturing them.
- 2. Chlorination systems should be capable of maintaining at least 1 ppm of chlorine residual for at least 20 minutes contact time before the water enters the activated charcoal system.
- 3. The final step in the process should be effective activated charcoal treatment to remove toxin remaining after the sand filtration and disinfection processes.
- 4. All treatment equipment used should meet NSF standard 53, and should be adequately sized to treat the maximum amount of water that you use. Treatment equipment needs regular monitoring and servicing to assure that it functions properly.
- 5. Ideally all water entering your home should be treated as recommended. It is possible to treat only water used in the kitchen, but this increases chances that animals or pets would inadvertently drink untreated water.